An atomistic investigation of FIB process damage on diamond

نویسندگان

  • Zhen Tong
  • Xichun Luo
  • Liam Blunt
  • Xiangqian Jiang
چکیده

Focused Ion Beam (FIB) is one of the important machining techniques to fabricate diamond sensors/detectors used for drug analysis, chemical analysis and bio-sensing applications. In-depth understanding of the high energy collision process and the residual damage induced along the trace of gallium ion could undoubtedly facilitate the development and improvement of performance of such devices through the optimization of machining processes. Based on the merit offered by large-scale molecular dynamics (MD) simulation method and the new progress made in high performance computing technique (HPC), a new atomistic modelling system was proposed in this paper to investigate the high energy collision process involved two gallium ions. The simulation results indicated that the energetic ion collision process comprises a bombardment event with a pulse temperature and a lateral relative long period annealing recrystallization process. The peak temperature for the second ion collision was 129.2 K higher than the first one, which indicates the alternation of the thermal conductivity of diamond due to the formation of amorphous (sp2 graphitelike) structure during the first ion collision and annealing process. Besides giving the damage configuration and distribution in diamond after fully recrystallization, the simulation also used coordination number (CN) and radius distribution function (RDF) to revel the change of diamond lattice structure after the collision process, which provided an insight of damage induced by FIB process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic investigation of FIB-induced damage in diamond cutting tools under various ion irradiation conditions

Focused Ion Beam (FIB) has been demonstrated as a promising tool to the fabrication of microand nanoscale diamond cutting tools. In-depth understanding of the ion-solid interaction in diamond leading to residual damage under different processing parameters are in high demand for the fabrication of nanoscale diamond tools. Molecular dynamics (MD) simulation method has long been regarded as a pow...

متن کامل

Investigation of focused ion beam induced damage in single crystal diamond tools

In this work, transmission electron microscope (TEM) measurements and molecular dynamics (MD) simulations were carried out to characterise the focused ion beam (FIB) induced damage layer in a single crystal diamond tool under different FIB processing voltages. The results obtained from the experiments and the simulations are in good agreement. The results indicate that during FIB processing cut...

متن کامل

Review on FIB-induced damage in diamond materials

Background: Although various advanced FIB processing methods for the fabrication of 3D nanostructures have been successfully developed by many researchers, the FIB milling has an unavoidable result in terms of the implantation of ion source materials and the formation of damaged layer at the near surface. Understanding the ion-solid interactions physics provides a unique way to control the FIB ...

متن کامل

Atomistic investigation of the wear of nanoscale diamond cutting tools shaped by focused ion beam

In recent years, micro/nanoscale diamond cutting tools shaped by focused ion beam (FIB) has been developed to the deterministic fabrication of micro/nano-structures owing to its unprecedented merits of high throughput, one-step, and highly flexible precision capabilities. However, the exposure of a diamond tool to FIB will result in the implantation of ion source material and the irradiation da...

متن کامل

Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer

In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015